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Liapunov Theorem for Modular Functions 
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We extend Liapunov Theorem to modular functions on complemented lattices. 

INTRODUCTION 

Liapunov (1940) proved that the range of a nonatomic G-additive mea- 
sure on a or-algebra with values in a finite-dimensional vector space is convex. 
Later Halmos (1948) gave a simplified proof of Liapunov's result. Various 
versions of Liapunov's theorem appeared in the following years. More 
recently, Liapunov's theorem has been independently proved for nonatomic 
finitely additive measures on Boolean algebras with the interpolation property 
(see, e.g., Volkmer and Weber, 1983; Armstrong and Prikry, 1981; Candeloro 
and Martellotti, 1979) and for nonatomic multimeasures (see, e.g., Artstein, 
1972; Avallone and Basile, 1993). 

In this paper, we extend the Liapunov theorem to modular functions on 
complemented lattices. Precisely, we prove that, if L is a complemented 
lattice with the interpolation property and ix: L ~ R n is a nonatomic modular 
function, then, for every a ~ L, IX([0, a]) is a bounded and convex subset 
of R". A consequence is that, if X is a locally convex Hausdorff topological 
linear space and ix: L --~ X is modular nonatomic, then the weak closure of 
Ix(L) is convex. 

In the proof, lattice uniformities (Weber, 1993a,b; Avallone and Weber, 
1994) play a role similar to Frechet-Nikodym topologies in classical measure 
theory (Volkmer and Weber, 1983). The study of modular functions on lattices 
includes the study of measures on Boolean algebras, of additive functions 
on sectionally complemented lattices, and of linear operators on Riesz spaces. 
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For a study, see, e.g., Weber (1993c-e)  and Fleischer and Traynor (1980, 
1982). 

P r e l i m i n a r i e s  

Let L be a lattice. L is called complemented if L has 0 and 1 and, for 
every x ~ L, there exists x '  E L such that x v x '  = l and x A x '  = 0. L is 
called sectionally complemented if L has 0 and, for every a ~ L, [0, a] is 
complemented. L is called modular if, for every x, y, z in L, x -> z implies 
(x ^ y) v z = x ^ (y v z). We say that L has the interpolation property if, 
for all sequences {xn}, {yn} in L such that, for every n ~ N, x, -- x,+l -- 
Yn+l <- Yn, there exists x ~ L such that, for every n ~ N, x~ --< x --< y~. 

A lattice uniformity on L is a uniformity on L which makes uniformly 
continuous the lattice operations. 

We use that, i lL is sectionally complemented and ~ is a lattice uniformity 
on L, then a basis for ~ is the family consisting of the sets 

{(x,y) ~ LZ: 3a ~ Uo: x v a = y v a }  

where U0 is a 0-neighborhood in ~ (Avallone and Weber, 1994, Proposi- 
tion 2.1). 

If  (G, +)  is a group, a function ~: L ~ G is called modular if, for 
every x, y ~ L, ~(x v y) + tx(x A y) = p~(X) + I-~(Y). 

If  G is a topological commutative group and ~: L --> G is modular, then 
there exists the weakest lattice uniformity 0//.(ix) that makes IX uniformly 
continuous and a basis for ~(IX) is the family consisting of the sets 

{(x, y) ~ L2: Ix(b) - Ix(a) ~ Wfor  every a, b ~ [x A y, X V y], a --< b} 

where W is a 0-neighborhood in G (Fleischer and Traynor, 1982; Weber, 
1993d, Proposition 3.1). The ~(~) - topology  is denoted by x(ix). By Weber 
(1993d, Proposition 2.5), N(~) = {(x, y) ~ L2: IX is constant on Ix A y, x v 
y] } is a congruence, the quotient L = L/N(~z) is a modular lattice, and, if we 
set ~(2) = Ix(x) for every Lx ~ 2 ~ L, then 0~:/, ---> G is a modular function. 
Moreover, if L is complemented, then / ,  is sectionally complemented. 

In the following, we denote by N and R, respectively, the set of  natural 
numbers and the set of real numbers. 

1. N O N A T O M I C  M O D U L A R  F U N C T I O N S  

In this section, we prove results which will be useful in the next section 
to prove the Liapunov theorem. 

Let L be a sectionally complemented lattice and G a topological commu- 
tative group. 
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Def in i t ion  1.1. Let  ~ be a lat t ice uni formity  on L. We say that (L, ~ )  
is cha ined  if, for every a, b E M, with a < b, and for every U E ~ ,  there 
exist  xl . . . . .  Xn-l in L such that a = xo < xl < "'" < xn = b and (xi- l ,  xi) 
E U f o r i  E {1 . . . . .  n}. 

Defini t ion 1.2. Let  ~ be a lat t ice uniformity  on L. (L, ~ )  is cal led 
nona tomic  if, for every 0 -ne ighborhood  Uo in ~ and for every x ~ L, there 
exist  x I . . . . .  x n in L such that xg A x i -- 0 for i 4 j ,  x = x~ v - . .  v xn, and 
xi ~ Uo for each i ~ {1 . . . . .  n}. 

Proposi t ion  1.3. Let  ~ be a lat t ice uniformity  on L. Then the fo l lowing 
condi t ions  are equivalent :  

(1) (L, ~ )  is nonatomic.  
(2) (L, ~ )  is chained.  

P r o o f  We set A = {(x, y) ~ Lz: x = y}. 
(1) ~ (2). Let  U ~ ~ and x, y ~ L, with x < y. Moreover ,  let V ~ 

such that A v V C_ U and let c be the relat ive complement  o f  x in [0, y]. By 
(1), there exist  Xl . . . . .  xn in L such that xi A Xj = 0 for i v ~ j ,  c = xl v --" v x~, 
and xi ~ V(O) for i ~ { 1 . . . . .  n }. Set  Yo = x and, for i E { 1 . . . . .  n }, Yi = x v 

i V'j=l xj .  T h e n x  = yo < yl < . . .  < yn = x v  c = y a n d  

( i-I j=l i-l ) 
(yi_l ,  yi) = x v V  xj,  x v  V x j v ( 0 ,  x/) E A v V C U 

= j =  1 

f o r /  E {1 . . . . .  n}. 
(2) ~ (1). Let  U0 be a 0 -ne ighborhood  in ~ andY ~ L. We can suppose  

U0 = U(0), where  U E ~t. Moreover ,  let V ~ ~ such that V A A C__ U. By 
(2), there exist  Xl . . . . .  x ,_  i in L such that 0 -- Xo < xl " '" < x~ = ~,, and 
(x i - l ,  xi) ~ V for i ~ { 1 . . . . .  n }. Set Yo = x0 and, for i ~ { 1 . . . . .  n}, let 
Yi be  the relat ive complement  of  x i -  l in [0, xi]. Then Y0 v - . -  v y ,  = ~, Yi A 
y j =  0 f o r i  4=j, and 

(0, Yi) = (xi- l  A Yi, Xi A Yi) = ( X i - I ,  "If'i) /x. (Yi ,  Yi) ~ V / x  A C_ U 

f rom which Yi ~ Uo for i ~ { 1 . . . . .  n}. 

Defini t ion 1.4. Let ix: L ---> G be a modu la r  function. We say that ix is 
nonatomic  i f  (L, 0~(ix)) is nonatomic.  

Proposi t ion  1.5. Let  ix: L --> G be a modula r  function,  with Ix(0) = 0. 
Then a 0 -ne ighborhood  basis for ~(IX) is the fami ly  consis t ing of  the sets 
W* = {a ~ L: IX([0, a]) C W}, where  W is a 0 -ne ighborhood  in G. 

Proof.  Let W be a 0 -ne ighborhood  in G and 

W ~ = {(x, y) ~ L2: Ix(b) - Ix(a) ~ W for every a, b ~ [x A y, X V y], a --< b} 
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It is sufficient to prove that W~ = W*. Let a ~ W~ and x -< a. Let y 
be the relative complement  o f  x in [0, a]. Then Ix(x) = Ix(a) - Ix(y) ~ W. 
Hence a ~ W*. Conversely, let x ~ W* and a, b ~ [0, x], with a -< b. Let 
c be the relative complement  of  a in [0, b]. Then p~(b) - Ix(a) = Ix(c) ~ W. 
Hence x ~ W~ 

Remark. Proposition 1.5 for orthomodular lattices has been proved in 
Weber (1993c, Proposition 3.3). 

Remark 1.6. Let IX be as in Proposition 1.5. Then, by Proposition 1.5, 
IX is nonatomic iff, for every 0-neighborhood W in G and for every x ~ L, 
there exist xl . . . . .  xn in L such that xi A x/ = 0 for i ~ j, xl v . . .  v xn = 
x, and Ix(y) e W for every y <- xi and i ~ {1 . . . . .  n}. 

Remark 1.7. Let Lo be a lattice and IX: L ---) R modular, with IX(0) = 0. 
We set, f o r x  ~ L0, Ix(x) = sup{ I Ix(y)l: y -< x}, p~+(x) = sup~ ~2~(ix(xi) - 
Ix(xi_l)) +, IX-(x) = sup~ ~'=l(ix(xi) - I X ( x i - I ) ) - ,  and I Ixl(x) = Ix+(x) + Ix-(x), 
where "y = {Xo . . . . .  xn} denotes a finite, totally ordered set with x0 = 0 and 
x, = x and, for c~ s R, we set c~ + = max{a,  0}, c~- = max{-c~,  0}. By 
Birkhoff  (1984, X.6), it is known that, if IX is of  bounded variation, then IX+, 
Ix-, and I IXl are increasing modular  functions and IX = IX+ - IX-. 

Proposition 1.8. Let IX: L ~ R be modular, with IX(0) = 0. Let IX and 
[ I~l as in Remark 1.7. Then, for every x E L, IX(x) --- I IX l (x) -< 2IX(x). 

Proof  The inequality IX --< I IX l is trivial and holds in any lattice. Now 
l e tx  ~ L and 0 = x0 < xl < " '"  < x, = x. From Weber (1993d) (see proof  
of  Proposition 2.8 applied to [0, x]), we obtain that, for every I C { 1 . . . . .  
n } ,  ~ i ~ l ( i x ( x i )  - IX(Xi-I) ) ~ ~.L([0, X]) .  Now let L J C { 1 . . . . .  n} be such that 

I Ix(x,) - Ix (x i - l ) l  
i=I 

= ~ ]  ( ix (x i )  - I x ( x i - I ) )  - ~ ]  ( ix (x i )  - Ix(x i_~))  
iEl i~J 

Ix([0 ,  x ] )  - Ix( [0 ,  x ] )  

Then 5~=11~(xi) - i x (x i - l ) l  <-- 2IX(x), f rom which we obtain the other 
inequality. 

Remark. By Proposition 1.8, we obtain that Ix is bounded iff IX is of  
bounded variation, as proved in Weber (1993d, Propositions 2.7 and 2.8). 

Corollary 1.9. Let n ~ N and i,z: L --~ R ~ modular, with IX(0) = 0. Let 
IX = (IXl . . . . .  ~n), IXi, and I Ixil as in Remark 1.7. Then the following conditions 
are equivalent: 
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(1) Ix is nonatomic. 
(2) For each e > 0 and x E L, there exist xl . . . . .  x,, in L such that 

x i ^ x 9  = 0 f o r i  4 : j ,  xl v . . .  VXm = x ,  andgxi(Xi) < � 9  
n and j --< m. 

(3) For each �9 > 0 and x E L, there exist xl . . . . .  Xm in L such that 
xi ^ xj = 0 f o r i  --/: j, xl v " "  v x m = x a n d  IIxil(xj) < � 9  ----- 
n a n d j  -< m. 

Proof We use Remark 1.6 and Proposition 1.8. 

Corollary 1.10. Suppose that L has 1. Let n ~ N and IX: L ~ R n modular  
and nonatomic. Then IX is bounded. 

Proof Let IX = (ixl . . . . .  IX~). We can suppose IX(0) = 0, because we 
can replace Ix by IX' defined by Ix'(x) = Ix(x) - IX(0) f o r x  E L. By Corollary 
1.9, there exists c > 0 such that, for every x E L, IIxil(x) --< IIxil(1) <-- c 
for each i -- n. 

2. L I A P U N O V  T H E O R E M  

In this section, let L be a lattice with the interpolation property, n e N, 
and ix: L --> R ~ a modular function, with ix = (IX1 . . . . .  IX~)- 

The idea of  the proof of  Liapunov theorem (Theorem 2.3) is based on 
the idea o f  Volkmer and Weber (1983). 

Lemma 2.1. Let L be sectionally complemented and modular. Suppose 
that, for every i ~ {1 . . . . .  n}, Ixi ----- 0 and IX(0) = 0. Then the following 
conditions are equivalent: 

(1) For every a ~ L, there exists b ~ L such that b <-- a and Ix(b) 
= 2-1ix(a). 

(2) For every a, b ~ L, there exists a continuous function a :  [0, 1] 
--> (L, ~(IX)) such that cx(0) = a, or(l) = b, c~(X) --< a v b, and 
Ix(c~(h)) = (1 - h)ix(a) + XIX(b) for every h. ~ [0, 1]. 

(3) For every a E L, IX([0, a]) is convex. 

Proof (2) ~ (3) ~ (1) are trivial. 
(1) ~ (2). (i) First we prove that, for every a ~ L, there exists a 

continuous and increasing function o~: [0, 1] ~ (L, ~ such that o~(0) = 
0, oL(1) = a, and IX(or(X)) = hl~(a) for every k ~ [0, 1]. 

Let a E L\{0} .  If  Ix(a) = 0, set or(k) = a for X c [0, 1] and c~(0) = 
0. Then o~: [0, 1] ---> (L, ~ is continuous by Proposition 1.5 and satisfies 
(i). Therefore we can suppose Ix(a) 4: 0. By (1), we can inductively obtain, 
for every dyadic rational k E [0, 1], ak a L such that Ix(ak) = kix(a) and a~ 
<- ak, if k, k' are dyadic rational and k <- k'.  By the interpolation property 
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of  L, we obtain, for every k ~ [0, 1], ax e L such that Ix(ax) = kix(a) and 
ax --< an, if k - k ' .  Set oL(k) = aa for every k e [0, 1]. We prove that 
o~: [0, 1] ~ (L, ~(IX)) is continuous. We use Proposition 1.5 and Proposit ion 
2.1 of  Avallone and Weber (1994). Let kk, k ~ [0, 1] such that Xk --+ )t. Let 
�9 > 0 and v ~ N such that, for every k > v, I)tk - )tl < �9 Let k 
> v. First suppose )tk -< )t. Then, denoting by bk the relative complement  
of  axk in [0, an], we have axk v b~ = ax v bk and Ix(b~) = Ix(an) - Ix(axk) = 
()t - )t~)ix(a), f rom which IXi(Y) < �9 for every i --  n and y --- b~. In similar 
way, if h~ > )t, we obtain ck such that an v ck = ank v ck and IXi(Y) < �9 for 
every i --< n and y ----- ck. 

(ii) Now let a, b in L and let c, d be the relative complements  of  a A 
b, respectively, in [0, a] and in [0, b]. By (i), for every i ~ { 1, 2} there exist 
continuous and increasing functions oLi: [0, 1] ~ (L, ~(IX)) such that eq(0) 
= 0~2(0 ) = 0, a I ( l )  = C, OL2(1 ) = d, tx(eq()t)) = )tp~(c), and ~,L(a2( ) t ) )  = 

)tin(d). Set, for )t E [0, 1], o~()t) = eq(1 - X) v o~2()t) v (a A b). Then, using 
that ~ ( 1  - )t) A et2()t) --< c A d = 0 and, by the modulari ty of  L, 

(oq(1 - )t) v Ot2()t)) A (a /X b) --< (c v d )  A (a/ ' ,  b) 
= ( ( a A d )  v c ) A b  = c a b  = 0 

we see that e~ satisfies (2). 

Lemma 2.2. Let L be sectionally complemented  and modular. Suppose 
Ixi -> 0 for every i -< n and IX(0) = 0. Let v: L ~ [0, + ~ ]  be a modular  
function with v(0) = 0 such that v is continuous with respect to -r(ix). Then 
the following conditions are equivalent: 

(1) For every a ~ L, IX(J0, a]) is convex.  
(2) For every a e L, (p,, v)([0, a])  is convex.  

Proo f  (2) ~ (1) is trivial. 
(1) ~ (2). Let a E L and set ~ '  = (IX, v). By L e m m a  2.1, there exists 

b --< a such that Ix(b) = 2-~ix(a). Let  c be the relative complement  of  b in 
[0, a]. Again by L e m m a  2.1, there exists a continuous e~: [0, 1] ~ (L, ~(IX)) 
such that e~(0) = b, o~(1) = c, a()t) - a, and Ix(e~()t)) = (1 - h)ix(b) + 
)t~(c) for )t ~ [0, l]. Then, for )t e [0, 1], Ix(a()t)) = 2- t ix(a) .  By the 
continuity of  v o a ,  we obtain )t o E [0, 1] such that v(e~()t0)) = 2 - Iv (a ) .  
Therefore,  set d = a(ho), d <- a, and Ix'(d) = 2-~ix'(a).  By L e m m a  2.1, 
IX'([0, a]) is convex.  

Theorem 2.3. Let L be complemented  and Ix nonatomic.  Then, for every 
a ~ L, IX(J0, a]) is a bounded and convex subset o f  R ~. 

Proo f  As in Corollary 1.10, we can suppose IX(0) = 0. Moreover,  we 
can replace L b y / ,  and IX by ~ (it is easy to show that L has the interpolation 
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property and fL is nonatomic).  Therefore  we can suppose L sectionally comple-  
mented  and modular. 

Let  a E L. By Corollary 1.10, IX(J0, a]) is bounded. First suppose Ixi 
--> 0 for every i --< n. For n = 1, the result, for Proposit ion 1.3, follows f rom 
Weber  (1993d, Theorem 5.11). Then we use induction. Let IX = (ixl . . . . .  
ixn) be nonatomic,  with IX; >- 0. Set Ix' = (IX1 + Ixn, IX2 . . . . .  P.,-I).  Then 
Ix" L ~ R ~-~ is by Corollary 1.9 nonatomic.  By the induction assumption,  
~ ' ( [0 ,  a]) is convex.  Since Ixn is continuous with respect  to "r(Ix'), by L e m m a  
2.2, (IX', Ix~)([0, a]) is convex.  If  we set T(t l  . . . . .  tn) = (tl -- t, ,  t2 . . . . .  tn), 

then T: R" ---> R" is linear and T(p/ ,  Ixn)([0, a]) = Ix(J0, a]). Therefore  IX(J0, 
a]) is convex.  

Now we remove  the assumption IX; >- 0 for i <-- n. By Remark  1.7 and 
Proposit ion 1.8, for each i -< n there exist modular  functions h;, v;: L --> [0, 
+ ~ [ ,  with hi, Pi ~ I IXi[ and Ixi = ~ k i  - 1}i" Set IX' = (ht . . . . .  k,,, vl . . . . .  
v,).  By Corollary 1.9, IX': L ---> R 2n is a nonatomic  modular  function. Then 
Ix'([0, a])  is convex. Set T: (zl ,  z2) E R 2n --> zl - z2 ~ R n. Hence T is linear 
and T(Ix'([0, a])) = IX([0, a]). Therefore  IX([0, a])  is convex.  

C o r o l l a r y  2.4.  Let L be complemented,  X a locally convex Hausdorf f  
topological  linear space, and IX': L ~ X a nonatomic modular  function. Then, 
for every a ~ L, the weak closure of  IX'([0, a])  is convex.  

P r o o f  For A C X, we denote by conv A the convex hull of  A and by 
.~w the weak  closure of  A. Moreover,  let X '  be the topological  dual of  X. 

Let  a ~ L. We prove that conv Ix'([0, a])  C IX'([0, a]) w. Let y ~ cony 
IX'([0, a]) a n d f l  . . . . .  f ,  E X ' .  Set v = (fj o Ix', . . . .  f ,  o Ix'). Then v: L 

R n is a nonatomic modular  function, because "r(v) <- "r(Ix) [we use that 
-r(v) is the weakest  locally convex topology on L which makes  v continuous; 
see Weber  (1993d, Proposit ion 3.2)]. By Theorem 2.3, v([0, a]) is convex.  
Then (f~(y) . . . . .  f~(y)) ~ cony v([0, a]) = v([0, a]). Therefore  there exists 
x < a such t h a t f ( y )  --- ' for each < Hence - -  f / ( Ix  (x))  i - -  n.  y E Ix'([0,  a ] )  W. 
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