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Liapunov Theorem for Modular Functions
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We extend Liapunov Theorem to modular functions on complemented lattices.

INTRODUCTION

Liapunov (1940) proved that the range of a nonatomic ¢-additive mea-
sure on a g-algebra with values in a finite-dimensional vector space is convex.
Later Halmos (1948) gave a simplified proof of Liapunov’s result. Various
versions of Liapunov’s theorem appeared in the following years. More
recently, Liapunov’s theorem has been independently proved for nonatomic
finitely additive measures on Boolean algebras with the interpolation property
(see, e.g., Volkmer and Weber, 1983; Armstrong and Prikry, 1981; Candeloro
and Martellotti, 1979) and for nonatomic multimeasures (see, e.g., Artstein,
1972; Avallone and Basile, 1993).

In this paper, we extend the Liapunov theorem to modular functions on
complemented lattices. Precisely, we prove that, if L is a complemented
lattice with the interpolation property and p: L — R" is a nonatomic modular
function, then, for every a € L, p([0, a]) is a bounded and convex subset
of R". A consequence is that, if X is a locally convex Hausdorff topological
linear space and p: L — X is modular nonatomic, then the weak closure of
(L) is convex.

In the proof, lattice uniformities (Weber, 1993a,b; Avallone and Weber,
1994) play a role similar to Frechet—Nikodym topologies in classical measure
theory (Volkmer and Weber, 1983). The study of modular functions on lattices
includes the study of measures on Boolean algebras, of additive functions
on sectionally complemented lattices, and of linear operators on Riesz spaces.
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For a study, see, e.g., Weber (1993c-¢) and Fleischer and Traynor (1980,
1982).

Preliminaries

Let L be a lattice. L is called complemented if L has 0 and 1 and, for
every x e L, there exists x’ € Lsuchthatx vy’ = landx A x’ = 0. L is
called sectionally complemented if L has 0 and, for every a € L, [0, d] is
complemented. L is called modular if, for every x, y, z in L, x = z implies
(x Ay)vz=xna(yvz).Wesay that L has the interpolation property if,
for all sequences {x,}, {y,} in L such that, forevery n e N, x, < x,,; =
Vel = ¥, there exists x € L such that, foreveryn e M, x, = x = y,.

A lattice uniformity on L is a uniformity on L which makes uniformly
continuous the lattice operations.

We use that, if L is sectionally complemented and AU is a lattice uniformity
on L, then a basis for U is the family consisting of the sets

{(x,el*3JaeUyxva=yva)

where U, is a 0-neighborhood in U (Avalione and Weber, 1994, Proposi-
tion 2.1).

If (G, +) is a group, a function p: L — G is called modular if, for
every x, y € L, p(x v y) + plx A y) = px) + p(y).

If G is a topological commutative group and : L — G is modular, then
there exists the weakest lattice uniformity U() that makes p uniformly
continuous and a basis for U(p) is the family consisting of the sets

{(x,y) € L% w(b) — ula) € Wforeverya, b € [x Ay, x vVyl,a=<b}

where W is a 0-neighborhood in G (Fleischer and Traynor, 1982; Weber,
1993d, Proposition 3.1). The AU(w)-topology is denoted by 7(p). By Weber
(1993d, Proposition 2.5), N(n) = {(x, y) € L* . is constant on [x A y, x V
y1} is a congruence, the quotient £, = L/N(p.) is a modular lattice, and, if we
set u(£) = p(x) for every Lx € £ e L, then i: L — G is a modular function.
Moreover, if L is complemented, then L is sectionally complemented.

In the following, we denote by N and R, respectively, the set of natural
numbers and the set of real numbers.

1. NONATOMIC MODULAR FUNCTIONS

In this section, we prove results which will be useful in the next section
to prove the Liapunov theorem.

Let L be a sectionally complemented lattice and G a topological commu-
tative group.
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Definition 1.1. Let % be a lattice uniformity on L. We say that (L, U)
is chained if, for every a, b € M, with a < b, and for every U € AU, there
exist x;, ..., X, in Lsuchthata = xo < x; < --- <x, = band (x,_, x;)
e Ufori e {1,...,n}.

Definition 1.2. Let AU be a lattice uniformity on L. (L, U) is called
nonatomic if, for every O-neighborhood Uy in U and for every x € L, there
exist Xy, ..., X, in L such that x; A x; = O fori # j, x = x; v --+ v x,, and
x; & Uyforeachi e {1,...,n}.

Proposition 1.3. Let 9 be a lattice uniformity on L. Then the following
conditions are equivalent:

(1) (L, W) is nonatomic.

(2) (L, W) is chained.

Proof. We set A = {(x,y) € L% x = y}.

()= 2). LetU € Yand x, y € L, with x < y. Moreover, let V e AU
such that A v V C U and let ¢ be the relative complement of x in [0, y]. By
(1), there exist xy, ..., x,in Lsuch that x; A x; = Ofori # j,c = x; v -+ v x,
and x; e V(O)fori e {1,...,n}.Setyg=xand, fori e {1,...,n},y;,=xv
Vis X Thenx =y, <y, <:-+ <y, =xvc=yand

i—1 i—1

(yi—lsyi): (xv\/xjsxv \/xj)v(07-xi) € AVVg U
= =

fori e {1,...,n}.

(2) = (1). Let Uy be a 0-neighborhood in U and x € L. We can suppose
U, = U(0), where U e 9. Moreover, let V € WU such that VA A C U. By
(2), there exist xj, ..., x,—;in Lsuch that 0 = xo < x; --- < x, = X, and
(-, x)y e Vfori e {1,...,n}. Setyg = xgand, fori e {1, ..., n}, let
y; be the relative complement of x;_; in [0, x;]. Then yo v <= vy, =X, y; A
y; = 0 fori # j, and

0, 9) = it AYo i AY) = G, ) A (Y y) e VAACU
from which y; € Uy fori e {1, ..., n}.

Definition 1.4. Let : L — G be a modular function. We say that p is
nonatomic if (L, U()) is nonatomic.

Proposition 1.5. Let u: L — G be a modular function, with pw(0) = 0.
Then a 0-neighborhood basis for AU() is the family consisting of the sets
W* = {a e L: w{[0, a]) C W}, where W is a 0-neighborhood in G.

Proof. Let W be a 0-neighborhood in G and
WO = {(x,y) € L* w(b) — w(a) € Wforeverya, b € [x ny, xVyl,a = b}
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It is sufficient to prove that Wo(0) = W*. Leta € W°0) and x < a. Let y
be the relative complement of x in [0, a]. Then n(x) = pw(a) — wW(y) € W.
Hence a € W*. Conversely, let x € W* and a, b € [0, x], with a =< b. Let
¢ be the relative complement of a in [0, b]. Then w(b) — w(a) = p(c) € W.
Hence x e W%0).

Remark. Proposition 1.5 for orthomodular lattices has been proved in
Weber (1993c¢, Proposition 3.3).

Remark 1.6. Let p. be as in Proposition 1.5. Then, by Proposition 1.5,
W is nonatomic iff, for every 0-neighborhood W in G and for every x € L,
there exist x|, ..., x,in Lsuch that x, Ax; = Ofori # j, x, v - vx, =
x,and w(y) e Wforeveryy =x;andi € {1,..., n}.

Remark 1.7. Let Ly be a lattice and p: L — R modular, with w(0) = 0.
We set, for x € Ly, fu(x) = sup{Ip()|:y = x}, w(x) = sup, 2 (ulx) —
OG-t () = supy 3 ((x) — wxi-) 7, and [l (x) = W) + (),
where v = {xg, . .., x,} denotes a finite, totally ordered set with x; = 0 and
x, = x and, for a € R, we set a* = max{a, 0}, a” = max{—a, 0}. By
Birkhoff (1984, X.6), it is known that, if  is of bounded variation, then ",
", and | ! are increasing modular functions and @ = p* — .

Proposition 1.8. Let w: L — R be modular, with w(0) = 0. Let i and
! as in Remark 1.7. Then, for every x € L, fi(x) = Iwl(x) = 2{3(x).

Proof. The inequality i =< |l is trivial and holds in any lattice. Now
letx e Land 0 = x9 < x; < --+ < x, = x. From Weber (1993d) (see proof
of Proposition 2.8 applied to [0, x]), we obtain that, for every I C {1, ...,
n}, i) — plxi-) € n(0,x]). Now let I, J C {1, ..., n} be such that

b=

< IM(Xf) - M(xi~1)|

=2 (wx) — pl-1) = 2 () — wxi-1)

iel iel

e ([0, x1) — ([0, x])

Then XA, lw(x) —p(xi-))! = 2f(x), from which we obtain the other
inequality.

Remark. By Proposition 1.8, we obtain that p is bounded iff w is of
bounded variation, as proved in Weber (1993d, Propositions 2.7 and 2.8).

Corollary 1.9. Let n € N and p: L — R" modular, with w(0) = 0. Let
= (W, . . -, M)y fli and | ;] as in Remark 1.7. Then the following conditions
are equivalent:
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(1) w is nonatomic.

(2) For each € > 0 and x e L, there exist x, ..., x,, in L such that
xinx;=0fori#jx v vx,=xand () <efori=
nand j = m.

(3) For each € > 0 and x € L, there exist xy, ..., X, in L such that
xinx;=0fori#jxv- - vx,=xand Ipl(x) <efori=
nandj < m.

Proof. We use Remark 1.6 and Proposition 1.8.

Corollary 1.10. Suppose that L has 1. Letn € N and p: L — R" modular
and nonatomic. Then . is bounded.

Proof. Let p. = (1uq, ..., W) We can suppose w(0) = 0, because we
can replace p. by ' defined by n'(x) = p(x) — p(0) for x € L. By Corollary
1.9, there exists ¢ > 0 such that, forevery x € L, Ip;l(x) = Ipf(l) = ¢
for each i = n.

2. LIAPUNOV THEOREM

In this section, let L be a lattice with the interpolation property, n € N,
and p: L — R" a modular function, with . = (i, . .., R

The idea of the proof of Liapunov theorem (Theorem 2.3) is based on
the idea of Volkmer and Weber (1983).

Lemma 2.1. Let L be sectionally complemented and modular. Suppose
that, for every i € {1, ..., n}, p; = 0 and (0) = 0. Then the following
conditions are eguivalent:

(1) For every a € L, there exists b € L such that b = @ and w(b)
= 2"'w(a).

(2) For every a, b € L, there exists a continuous function a: [0, 1]
> (L, %)) such that a(0) = a, a(l) = b, a(\) < a v b, and
pla\) = (1 — Mpla) + Ap(b) for every A e [0, 1].

(3) Forevery a € L, ([0, a]) is convex.

Proof. (2) = (3) = (1) are trivial.

(1) = (2). (1) First we prove that, for every a € L, there exists a
continuous and increasing function a: [0, 1] — (L, ®U(w)) such that «(0) =
0, a(1) = a, and p(a(N)) = Apla) for every A e [0, 1].

Let a € L\{0}. If p(a) = 0O, set a(A) = a for A € [0, 1] and «(0) =
0. Then a: [0, 11— (L, WU(W)) is continuous by Proposition 1.5 and satisfies
(i). Therefore we can suppose w(a) # 0. By (1), we can inductively obtain,
for every dyadic rational k € [0, 1], @, € L such that p(a,) = kw(a) and q,
< ap if k, k' are dyadic rational and k = k'. By the interpolation property
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of L, we obtain, for every A e [0, 1], @, e L such that p(ay) = \p{a) and
ay = ay if A = N, Set a(\) = a, for every A e [0, 1]. We prove that
a: [0, 1] — (L, U(w)) is continuous. We use Proposition 1.5 and Proposition
2.1 of Avallone and Weber (1994). Let A\, A € [0, 1] such that A, — \. Let
€ > 0 and v € N such that, for every k > v, I\, — AN < &/|[p(@)]l. Let k
> v. First suppose A, = A. Then, denoting by b, the relative complement
of ay, in [0, a)], we have a), v b, = a, v b and u(by) = @) — way) =
(A — MNJp(a), from which p,(y) < e for every i =< n and y < b,. In similar
way, if Ay > A, we obtain ¢, such that a, v ¢, = a), v ¢, and p;(y) < e for
every i = nandy = ¢

(ii)) Now let a, b in L and let ¢, d be the relative complements of a A
b, respectively, in [0, a] and in [0, b]. By (i), for every i {1, 2} there exist
continuous and increasing functions o;: [0, 1] — (L, U(W)) such that o, (0)
= oy(0) = 0, ay(1) = ¢, (1) = d, play(A)) = Ap(c), and plo(N) =
Au(d). Set, for A € [0, 1], a(\) = o,(1 — N) v op(N) v (a A b). Then, using
that o;(1 — AN) A ax(A\) = ¢ A d = 0 and, by the modularity of L,

({1 =N var(M)Ala@aab)=(cvd)a(anb)
={(andyvoorb=cab=0

we see that « satisfies (2).

Lemma 2.2. Let L be sectionally complemented and modular. Suppose
p; = 0 for every i = n and p(0) = 0. Let v: L — [0, +o] be a modular
function with v»(0) = 0 such that v is continuous with respect to T(p.). Then
the following conditions are equivalent:

(1) Forevery a € L, ([0, a]) is convex.
(2) Forevery a € L, (i, v)([0, a]) is convex.

Proof. (2) = (1) is trivial.

(1) = (2). Let a € L and set W’ = (u, v). By Lemma 2.1, there exists
b =< a such that w(b) = 27 'u(a). Let ¢ be the relative complement of b in
[0, a]. Again by Lemma 2.1, there exists a continuous a: [0, 1] — (L, U())
such that a(0) = b, a(l) = ¢, a(A) = q, and p(a(\)) = (1 — MDu(d) +
Awlc) for X € [0, 1]. Then, for X € [0, 1], w(a(\)) = 27'n(a). By the
continuity of v O o, we obtain Ay € [0, 1] such that v(a(Ag)) = 27 'v(a).
Therefore, set d = a(\g), d = a, and p'(d) = 27'uw'(a). By Lemma 2.1,
1 ([0, a]) is convex.

Theorem 2.3. Let L be complemented and p nonatomic. Then, for every
a € L, u([0, al) is a bounded and convex subset of R".

Proof. As in Corollary 1.10, we can suppose u(0) = 0. Moreover, we
can replace L by L and p by i (it is easy to show that L has the interpolation
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property and i is nonatomic). Therefore we can suppose L sectionally comple-
mented and modular.

Let @ € L. By Corollary 1.10, w([0, a]) is bounded. First suppose w;
= 0 for every i = n. For n = 1, the result, for Proposition 1.3, follows from
Weber (1993d, Theorem 5.11). Then we use induction. Let . = (4, ...,
i) be nonatomic, with w; = 0. Set ' = (w; + Py K2y « -+ 5 Py-y). Then
w': L — R""is by Corollary 1.9 nonatomic. By the induction assumption,
1 (10, a]) is convex. Since ., is continuous with respect to T(u"), by Lemma
2.2, (1, w0, al) is convex. If we set T(¢, ..., ) = (t; — ty foy . . .5 £y,
then T R" — R" is linear and T(p', w,)([0, a}) = ([0, a]). Therefore ([0,
al) is convex.

Now we remove the assumption w,; = O for i = n. By Remark 1.7 and
Proposition 1.8, for each i =< n there exist modular functions \;, v;: L — [0,
+oof, with A, v; = Il and p; = Ny — v Set ' = (AN, ..., Ay Vpy o vty
v,). By Corollary 1.9, w': L — R*" is a nonatomic modular function. Then
w'([0, a)) is convex. Set T: (z, ;) € R** — z, — z, € R". Hence T is linear
and T(p.'([0, a])) = w([0, al). Therefore w([0, a]) is convex.

Corollary 2.4. Let L be complemented, X a locally convex Hausdorff
topological linear space, and p': L — X a nonatomic modular function. Then,
for every a € L, the weak closure of W'([0, a]) is convex.

_ Proof. For A C X, we denote by conv A the convex hull of A and by
A" the weak closure of A. Moreover, let X' be the topological dual of X.

Let a € L. We prove that conv p.’([0, a]) C p'([0, a])”. Let y € conv
pw' {0, adand fi, ..., fr e X'.Setv=(ffopn,....f,on) Thenv: L
—> R" is a nonatomic modular function, because 7(v) = 7(W) [we use that
7(v) is the weakest locally convex topology on L which makes v continuous;
see Weber (1993d, Proposition 3.2)]. By Theorem 2.3, v([0, a]) is convex.
Then (fi(y), - .., fu(3)) € conv v([0, a]) = v([0, a]). Therefore there exists
x = a such that fi(y) = fi(p'(x)) for each i =< n. Hence y € w'([0, a])”.
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